Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Viruses ; 16(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38543826

RESUMO

We completed a retrospective review of data collected by the JH-CROWN consortium based on ICD10 codes for a hospitalized cohort. The severity and prevalence of COVID-19 and development of PASC within heritable connective tissue diseases were unknown; however, clinical observation suggested a thorough examination was necessary. We compared rates of disease severity, death, and PASC in connective tissue diseases versus the entire cohort as well as in diabetes and hypertension to determine if connective tissue disease was a risk factor. Of the 15,676 patients in the database, 63 (0.40%) had a connective tissue disease, which is elevated relative to the distribution in the population, suggesting a higher risk of severe disease. Within these 63 patients, 9.52% developed PASC compared to 2.54% in the entire cohort (p < 0.005). Elucidation of populations at high risk for severe disease and development of PASC is integral to improving treatment approaches. Further, no other study to date has examined the risk in those with connective tissue diseases and these data support a need for enhanced awareness among physicians, patients, and the community.


Assuntos
COVID-19 , Doenças do Tecido Conjuntivo , Hipertensão , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Doenças do Tecido Conjuntivo/epidemiologia , Bases de Dados Factuais , Progressão da Doença
2.
Am J Hum Genet ; 110(8): 1414-1435, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541189

RESUMO

Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38199782

RESUMO

Dihydropyrimidinase (DHP) deficiency is an autosomal recessive metabolic disorder caused by biallelic pathogenic variants of DPYS Patients with DHP deficiency exhibit a broad spectrum of phenotypes, ranging from severe neurological and gastrointestinal involvement to cases with no apparent symptoms. The biochemical diagnosis of DHP deficiency is based on the detection of a significant amount of dihydropyrimidines in urine, plasma, and cerebrospinal fluid samples. Molecular genetic testing, specifically the identification of biallelic pathogenic variants in DPYS, has proven instrumental in confirming the diagnosis and facilitating family studies. This case study documents the diagnostic journey of an 18-yr-old patient with DHP deficiency, highlighting features at the severe end of the clinical spectrum. Notably, our patient exhibited previously unreported skeletal features that positively responded to bisphosphonate treatment, contributing valuable insights to the clinical characterization of DHP deficiency. Additionally, a novel DPYS variant was identified and confirmed pathogenicity through metabolic testing, further expanding the variant spectrum of the gene. Our case emphasizes the importance of a comprehensive diagnostic approach using genetic sequencing and metabolic testing for accurate diagnosis.


Assuntos
Erros Inatos do Metabolismo , Humanos , Testes Genéticos , Fenótipo , Difosfonatos
4.
Am J Hum Genet ; 108(10): 2006-2016, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626583

RESUMO

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.


Assuntos
Paralisia Cerebral/patologia , Epilepsia/patologia , Predisposição Genética para Doença , Variação Genética , Perda Auditiva/patologia , Deficiência Intelectual/patologia , Espasticidade Muscular/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Adulto , Alelos , Animais , Paralisia Cerebral/etiologia , Paralisia Cerebral/metabolismo , Pré-Escolar , Epilepsia/etiologia , Epilepsia/metabolismo , Feminino , Perda Auditiva/etiologia , Perda Auditiva/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/etiologia , Deficiência Intelectual/metabolismo , Masculino , Espasticidade Muscular/etiologia , Espasticidade Muscular/metabolismo , Ratos , Adulto Jovem
5.
Trends Endocrinol Metab ; 32(12): 1007-1014, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666940

RESUMO

Hormones have traditionally been classified by their mode of biosynthetic origin. We postulate a mode of hormone biosynthesis that leads to a new subclass of protein hormones. Members of this class are derived from a cleavage event that also generates a much larger, functionally unrelated, nonhormonal protein. Here, we examine four representative members of this group: endostatin, endotrophin, asprosin, and placensin. We have named this subclass of protein hormones caudamins, from the Latin word cauda meaning 'tail'. These four caudamins have shown promise in understanding and treating diseases like metabolic syndrome and cancer. Identification of the rest of the caudamins will likely provide a plethora of drug targets for a variety of diseases.


Assuntos
Hormônios , Humanos
6.
Am J Hum Genet ; 108(9): 1710-1724, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450031

RESUMO

Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.


Assuntos
Osso e Ossos/metabolismo , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Osteoporose/genética , Animais , Ácido Ascórbico/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Complexo I de Proteína do Envoltório/deficiência , Proteína Coatomer/química , Proteína Coatomer/deficiência , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Embrião não Mamífero , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Complexo de Golgi , Haploinsuficiência , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Índice de Gravidade de Doença , Peixe-Zebra
7.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33001864

RESUMO

BACKGROUNDTranscriptome sequencing (RNA-seq) improves diagnostic rates in individuals with suspected Mendelian conditions to varying degrees, primarily by directing the prioritization of candidate DNA variants identified on exome or genome sequencing (ES/GS). Here we implemented an RNA-seq-guided method to diagnose individuals across a wide range of ages and clinical phenotypes.METHODSOne hundred fifteen undiagnosed adult and pediatric patients with diverse phenotypes and 67 family members (182 total individuals) underwent RNA-seq from whole blood and skin fibroblasts at the Baylor College of Medicine (BCM) Undiagnosed Diseases Network clinical site from 2014 to 2020. We implemented a workflow to detect outliers in gene expression and splicing for cases that remained undiagnosed despite standard genomic and transcriptomic analysis.RESULTSThe transcriptome-directed approach resulted in a diagnostic rate of 12% across the entire cohort, or 17% after excluding cases solved on ES/GS alone. Newly diagnosed conditions included Koolen-de Vries syndrome (KANSL1), Renpenning syndrome (PQBP1), TBCK-associated encephalopathy, NSD2- and CLTC-related intellectual disability, and others, all with negative conventional genomic testing, including ES and chromosomal microarray (CMA). Skin fibroblasts exhibited higher and more consistent expression of clinically relevant genes than whole blood. In solved cases with RNA-seq from both tissues, the causative defect was missed in blood in half the cases but none from fibroblasts.CONCLUSIONSFor our cohort of undiagnosed individuals with suspected Mendelian conditions, transcriptome-directed genomic analysis facilitated diagnoses, primarily through the identification of variants missed on ES and CMA.TRIAL REGISTRATIONNot applicable.FUNDINGNIH Common Fund, BCM Intellectual and Developmental Disabilities Research Center, Eunice Kennedy Shriver National Institute of Child Health & Human Development.


Assuntos
Fibroblastos , Doenças Genéticas Inatas/genética , RNA-Seq , Pele , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
8.
Tissue Eng Part B Rev ; 27(4): 313-329, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32940150

RESUMO

Bone is a highly vascularized organ, providing structural support to the body, and its development, regeneration, and remodeling depend on the microvascular homeostasis. Loss or impairment of vascular function can develop diseases, such as large bone defects, avascular necrosis, osteoporosis, osteoarthritis, and osteopetrosis. In this review, we summarize how vasculature controls bone development and homeostasis in normal and disease cases. A better understanding of this process will facilitate the development of novel disease treatments that promote bone regeneration and remodeling. Specifically, approaches based on tissue engineering components, such as stem cells and growth factors, have demonstrated the capacity to induce bone microvasculature regeneration and mineralization. This knowledge will have relevant clinical implications for the treatment of bone disorders by developing novel pharmaceutical approaches and bone grafts. Finally, the tissue engineering approaches incorporating vascular components may widely be applied to treat other organ diseases by enhancing their regeneration capacity. Impact statement Bone vasculature is imperative in the process of bone development, regeneration, and remodeling. Alterations or disruption of the bone vasculature leads to loss of bone homeostasis and the development of bone diseases. In this study, we review the role of vasculature on bone diseases and how vascular tissue engineering strategies, with a detailed emphasis on the role of stem cells and growth factors, will contribute to bone therapeutics.


Assuntos
Neovascularização Fisiológica , Osteogênese , Regeneração Óssea , Osso e Ossos , Microvasos
9.
Am J Med Genet A ; 182(9): 2058-2067, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686290

RESUMO

SMARCA4 encodes a central ATPase subunit in the BRG1-/BRM-associated factors (BAF) or polybromo-associated BAF (PBAF) complex in humans, which is responsible in part for chromatin remodeling and transcriptional regulation. Variants in this and other genes encoding BAF/PBAF complexes have been implicated in Coffin-Siris Syndrome, a multiple congenital anomaly syndrome classically characterized by learning and developmental differences, coarse facial features, hypertrichosis, and underdevelopment of the fifth digits/nails of the hands and feet. Individuals with SMARCA4 variants have been previously reported and appear to display a variable phenotype. We describe here a cohort of 15 unrelated individuals with SMARCA4 variants from the Coffin-Siris syndrome/BAF pathway disorders registry who further display variability in severity and degrees of learning impairment and health issues. Within this cohort, we also report two individuals with novel nonsense variants who appear to have a phenotype of milder learning/behavioral differences and no organ-system involvement.


Assuntos
Anormalidades Múltiplas/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Predisposição Genética para Doença , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/patologia , Adolescente , Criança , Pré-Escolar , Proteínas Cromossômicas não Histona/genética , Códon sem Sentido/genética , Face/patologia , Feminino , Estudos de Associação Genética , Deformidades Congênitas da Mão/epidemiologia , Deformidades Congênitas da Mão/patologia , Humanos , Lactente , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Masculino , Micrognatismo/epidemiologia , Micrognatismo/patologia , Pescoço/patologia , Fenótipo
10.
Eur J Hum Genet ; 28(10): 1422-1431, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32483341

RESUMO

There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 (CHD3), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.


Assuntos
Anormalidades Craniofaciais/genética , DNA Helicases/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Adolescente , Adulto , Domínio Catalítico , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , DNA Helicases/química , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/química , Mutação , Fenótipo , Síndrome
11.
Neuron ; 106(5): 759-768.e7, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32243781

RESUMO

Autism spectrum disorder (ASD) is more prevalent in males; however, the etiology for this sex bias is not well understood. Many mutations on X-linked cell adhesion molecule NLGN4X result in ASD or intellectual disability. NLGN4X is part of an X-Y pair, with NLGN4Y sharing ∼97% sequence homology. Using biochemistry, electrophysiology, and imaging, we show that NLGN4Y displays severe deficits in maturation, surface expression, and synaptogenesis regulated by one amino acid difference with NLGN4X. Furthermore, we identify a cluster of ASD-associated mutations surrounding the critical amino acid in NLGN4X, and these mutations phenocopy NLGN4Y. We show that NLGN4Y cannot compensate for the functional deficits observed in ASD-associated NLGN4X mutations. Altogether, our data reveal a potential pathogenic mechanism for male bias in NLGN4X-associated ASD.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Neurônios/metabolismo , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/genética , Masculino , Mutação , Transporte Proteico/genética
12.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197074

RESUMO

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética/genética , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , eIF-2 Quinase/genética , Adolescente , Ataxia/genética , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Masculino , Substância Branca/patologia
13.
JBMR Plus ; 4(3): e10335, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32161841

RESUMO

Worldwide, one in five men aged over 50 years will experience osteoporosis or a clinical bone fracture, with a greater fracture-related mortality rate than women. However, the genetic etiology of osteoporosis in men is still poorly understood. We aimed to identify the genetic variants and candidate genes associated with extremely low or high BMD for a better understanding of the biology underlying low bone density that may point to potential therapeutic targets for increasing bone mass. Subjects from the Osteoporotic Fractures in Men Study (MrOS) cohort were evaluated by age and BMI-adjusted total hip BMD. Those with BMD values 3 SDs away from the mean were selected and the remaining individuals whose adjusted BMD ranked at the highest or lowest 100 were included. Men with the lowest adjusted BMD (N = 98) and highest adjusted BMD (N = 110) were chosen for exome sequencing. Controls (N = 82) were men of Northern and Western European descent from the US Utah population of the 1000 Genomes Project. Fisher's exact test was performed to compare low- or high-BMD subjects with controls for single-gene associations. Additionally, sets of candidate genes causative of heritable disorders of connective tissue, including osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS), were grouped for multigene and mutation burden analyses. No single-gene associations with rare variants were found for either the low BMD group (33 genes) or high BMD group (18 genes). In the group of OI genes, we detected a significant threefold increased accumulation of rare variants in low-BMD subjects compared with controls (p = 0.009). Additionally, genes associated with EDS had a twofold increased frequency in low-BMD subjects compared with controls (p = 0.03). These findings reveal a rare variant burden in OI and EDS disease genes at low BMD, which suggests a potential gene-panel approach to screen for multivariant associations in larger cohorts. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

14.
Am J Med Genet C Semin Med Genet ; 184(1): 124-128, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030882

RESUMO

Sudden cardiac death (SCD) is one of the leading causes of mortality in the U.S. military and competitive athletes. In this study, we simulate how genetic screening may be implemented in the military to prevent an SCD endpoint resulting from hypertrophic cardiomyopathy (HCM). We created a logistic regression model to predict variant pathogenicity in the most common HCM associated genes MYH7 and MYBPC3. Model predictions were used in conjunction with the gnomAD database to identify frequencies of pathogenic variants. Extrapolating these variants to a military population, lives saved and cost benefit analyses were conducted for screening for HCM related to pathogenic variants in MYH7 and MYBPC3. Genetic screening for HCM followed by echocardiography in individuals with pathogenic variants is predicted to save an average of 2.9 lives per accession cohort, based on historical cohort sizes, and result in a break-even cost of ~$7 per test. The false positives, defined as disqualified individuals for military service who do not have HCM, are predicted to be 0 individuals per accession cohort. This study suggests that the main barriers for the implementation of genetic screening for the U.S. military are the low detection rate and variant interpretation.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Morte Súbita Cardíaca/prevenção & controle , Cadeias Pesadas de Miosina/genética , Adulto , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/epidemiologia , Morte Súbita Cardíaca/epidemiologia , Ecocardiografia/métodos , Feminino , Testes Genéticos , Genética Populacional , Humanos , Masculino , Medicina Militar , Militares , Mutação/genética , Linhagem , Fenótipo
15.
Genet Med ; 22(2): 389-397, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina/genética , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Genótipo , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome , Fatores de Transcrição/genética
16.
Exp Neurol ; 326: 113164, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887305

RESUMO

Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a rare, slowly progressive white matter disease caused by mutations in the mitochondrial aspartyl-tRNA synthetase (mt-AspRS, or DARS2). While patients show characteristic MRI T2 signal abnormalities throughout the cerebral white matter, brainstem, and spinal cord, the phenotypic spectrum is broad and a multitude of gene variants have been associated with the disease. Here, Dars2 disruption in CamKIIα-expressing cortical and hippocampal neurons results in slowly progressive increases in behavioral activity at five months, and culminating by nine months as severe brain atrophy, behavioral dysfunction, reduced corpus callosum thickness, and microglial morphology indicative of neuroinflammation. Interestingly, RNAseq based gene expression studies performed prior to the presentation of this severe phenotype reveal the upregulation of several pathways involved in immune activation, cytokine production and signaling, and defense response regulation. RNA transcript analysis demonstrates that activation of immune and cell stress pathways are initiated in advance of a behavioral phenotype and cerebral deficits. An understanding of these pathways and their contribution to significant neuronal loss in CamKII-Dars2 deficient mice may aid in deciphering mechanisms of LBSL pathology.


Assuntos
Aspartato-tRNA Ligase/genética , Leucoencefalopatias/fisiopatologia , Mitocôndrias/enzimologia , Animais , Atrofia , Comportamento Animal , Encéfalo/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Córtex Cerebral/metabolismo , Corpo Caloso/parasitologia , Hipocampo/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/psicologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Neurônios/metabolismo
18.
Nat Commun ; 10(1): 3094, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300657

RESUMO

AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de AMPA/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Lactente , Mutação com Perda de Função , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Adulto Jovem
19.
Hum Mutat ; 40(7): 908-925, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817854

RESUMO

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Galactose/metabolismo , Animais , Biópsia , Células CHO , Células Cultivadas , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Cricetulus , Feminino , Humanos , Masculino , Mutação
20.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773277

RESUMO

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Assuntos
Instabilidade Cromossômica , Dano ao DNA , Variação Genética , Anormalidades Musculoesqueléticas/patologia , NF-kappa B/genética , Osteocondrodisplasias/patologia , Adolescente , Adulto , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Estudos de Associação Genética , Humanos , Camundongos , Camundongos Knockout , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Sequenciamento do Exoma , Adulto Jovem , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...